13. Given that $a=\sqrt{ } 3$ and $b=\sqrt{ } 48$
(a) find the value of a^{2}
\qquad
(b) show that $(a+b)^{2}=75$
14. Expand and simplify $(3+\sqrt{ } 8)(4+\sqrt{ } 2)$

Give your answer in the form $a+b \sqrt{ } 2$ where a and b are integers.
15. Simplify $5 \sqrt{ } 8+\sqrt{ } 18$
16. Rationalise the denominator of

$$
\frac{8}{\sqrt{2}}
$$

17. Expand and simplify $(\sqrt{7}-\sqrt{ } 3)^{2}$
18. Write $\sqrt{ } 11+\sqrt{ } 99$ in the form $a \sqrt{ } b$ where a and b are integers.
19. Expand $(8-\sqrt{3})^{2}$ giving your answer in form $a+b \sqrt{3}$
20. Show that $(\sqrt{2}+3 \sqrt{ } 8)^{2}=98$
(3)
21. The midpoints of the sides of a square of side 10 cm are joined to form another square. This process is then repeated to create the shaded square.

Find the area of the shaded square.
22. Given that

$10-\sqrt{32}$ $\sqrt{2}=a+b \sqrt{2}$

where a and b are integer.

Find the values of a and b.

$$
\begin{aligned}
& \mathrm{a}= \\
& \mathrm{b}=
\end{aligned}
$$

23. A shed has dimensions, in metres, of

$$
\text { height }=\sqrt{5}, \text { width }=\sqrt{6} \text { and length }=\frac{9}{\sqrt{2}}
$$

Find the volume of the shed.
Give your answer in the form $a \sqrt{ } 15$, where a is an integer.

